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ABSTRACT

Our computational experience with Gomory's algorithm for the

integer linear programming problem of synthesis of optimum network with

NOR gates is presented. The problem is briefly described and accompanied

with statistics such as the size and density of the coefficient matrix.

Upon successful solution of problems with 90 variables and 2^0

rows, the effect of constraint orderings and adding additional inequalities

was investigated. The difference in convergence of two of Gomory's pivot

selection rules is noted. Also the behavior in convergence of feasible

versus non-feasible problems is demonstrated.

Rn
The convergence rate is conjectured to be A'10 where n is the

number of variables of a switching functi on to be synthesized and A, B are

constant coefficients. This rate is compared to an exhaustive method

developed by Hellerman to solve the same logical design problem.
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1 . INTRODUCTION

Our computational experiments were performed using Gomory's all-

integer integer linear programming method even though our variables are

restricted to be 1 or 0. The problems are unusual in that the number

of inequalities is larger than the number of variables . This is just

the opposite of the vast majority of the other published computational

reports. Also the size of the coefficient matrix is much larger - up

to 90 variables and 2^0 constraints. The problem formulation is derived

from the design of logic circuits in digital computers. Specifically

it is concerned with the optimum synthesis of a NOR element network

complicated by considering fan-in and fan-out restrictions. In the next

section the set of inequalities will be stated and briefly explained.

Previous publications have demonstrated the very erratic be-

havior in convergence. Some problems have been solved in only a few

iterations while others needed several hundred thousand iterations for a

solution. ' The convergence rate of Gomory's method seems to be

highly dependent upon the characteristic of the constraints of each

particular problem.

We will examine the rate of convergence and the effect that

certain factors have upon it. Some of the factors we will consider are

the order of the inequalities, the addition of other constraints, and

the difference between feasible and non-feasible solutions.



2. PROBLEM STATEM
Fig. 1: Feed Forward NOR Circuit For
the Boolean Function f(x, , x , x )

Our integer problem arises from the attempt to synthesize a

Boolean function f of three variables, x. , x , and x„ with a feed forward

NOR element circuit as is shown in figure 1. In the figure we denote

the weight of an input variable x. to the j-th NOR element by w. and the

weight of the output from the k-tn NOR element to the e-th element by

a, . The logical design problem is to determine which a' s and w's are 1

(connected) and which are zero (disconnected) by using Gomory's all-integer

algorithm. It is possible that the given number of elements R is in-

sufficient for a particular function, i.e. the problem is infeasible.

Therefore we may have a considerable number of infeasible problems if

R is small

.

For a detail description of the general feed forward network synthesis

formulation of which this problem is a special case see reference (8).
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For a detailed derivation of these equations see reference (8)
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These seven groups of constraints A-F compose the complete set

of inequalities. The constant U is a sufficiently large positive value so

that if P, = the j -th inequality of A is always satisfied and if

-(j) . ,-_ (j) . (o) „ (j),

= 1 the j -th inequality of B is always satisfied. The input vector

X [x ', xn ' , x " '

) for the three variable Boolean function f(x)
\1 ' 2 ' 3

assumes all eight possible combinations of 1 and 0. Inequalities D and

F make the further restrictions that no NOR element can have more than 3

inputs or more than 3 outputs. The fan-in, fan-out constraints (inequalities

D and F) arise from practical engineering restrictions on the actual

electronic circuits which are used to realize the NOR elements.

Therefore cur all -integer integer linear programming problem is:

3
i :: ;r :>

.

-,:

2-1 R

a
ek

k i k=e+l

under the con c Lnts

A through G

By minimizing g we are minimizing the total number of connections. The

procedure for determining a network for a given Boolean function is out-

lined in figure 2.



Fig. 2: Flow Chart Of Procedure

of Synthesizing A Boolean Function

In this manner we will obtain a network with the fewest number of

NOR elements and with minimum connections.

The number of variables, inequalities, entries, and non-zero

entries in the coefficient matrix all increase with the number of

elements R. Figure 3 shows this growth. Slack variables are not

included.



Fig. 3: Characteristics Of The Coefficient Matrix

R
Matrix Size Coefficients

Constraints Variables Total No. Non-zero* "^Non-zero

1 11 3 33 18 55 = 50

2 64 23 1472 183 12.40

3 142 52 7380 447 6.08

4 245 90 22,040 810 3.68

5 374 137 51,250 1277 2A9

6 528 193 101, 800 1836 1.81

7 707 258 182,200 2487 1.37

This number is for the Boolean function f(x)=l. See the E inequal-

ities for the effect of other Boolean functions.



3. OUTLINE OF RESULTS

The algorithm was programmed in assembly language NICAP for

the ILLIAC II computer at the Univer; : nois. The computer has a 1.75

microsecond core cycle time, an 8K - 52 bi t word memory, and the

facility to operate on 13 bit quarter words. All the coefficient matrix

entries were stored in the 13 bit quarter words. Therefore whenever the

algorithm generates a number greater in absolute value than ^+096, the

computation terminates with overflow,

Gomory in proposing his all -integer integer program suggested

several, variations to the basic algorithm. We used the variation

which chooses the pivot row which minimizes the lexiograpbic rank of

the pivot column. In order to ascertain the factors important in

convergence of the algorithm, we solved several problems. These same

problems were then reformulated by changing the order of inequalities,

by adding additional, constraints, by changing the value of U, etc. In

our tests the number of problems run was not large enough to guarantee

statistical, accuracy. This is especially true since convergence if

very unpredictable. However the results do demonstrate the qualitative

tendency of integer programming.

The integer linear programming formulation with R = M models

a feed-forward network of M NOP elements If a Boolean function is

realizable with M or fewer elements, the corresponding integer linear

program has an optimal feasible solution. But if a function requires

more than M elements, the problem is not feasible.

The set of Boolean functions upon which we performed our exper-

(1?)
iment.p is shown in figure 4, Hellerman's " network numbering system was

used to uniquely identify each function and will be used throughout this report.

(



Fig. k: Complete Set of Boolean Test Functions

Boolean Function
Hellerman
netwprK
number

Number of
gates in
network

Objective
function
value

a J+D 1 1

ab 5D 1 2

a ^ b 6E 2 3

ab 7D 2 3

a v b 8D 3 k

ab 9D 3 k

aBc 1 1 3

a ^ b v c 2 2 k

ab ^ ac 3 2 k

aBc l+ 2 k

ab ^ c 5 3 5

a ^ b v c 6 3 5

aB v ac 7 3 5

ac v be 8 3 5

ab v c 9 3 6

ab ^ c 10 3 5

a s^ B 10D 4 5

ab s' aB 11D 4 8

ab v c 11 4 6

a ^ B ^ c 12 4 6

a v Be 13 4 6

aB v ac Ik 4 6

ac ^ be 15 k 6

ab v ac 16 k 7

abc 17 k 6

ab v ac v be 18 k 9
a v be 19 k 7

ab ^ be 20 k 8

abc v abc 21 k 9
aB v be v ac 22 h 9

abc v be 23 k 9
aB v ab v c 24 k 10

abc ^ ac ^ be 25 k 10



The density of non-zero coefficients in the coefficient

matrix after each iteration is also of interest. The density of the

initial matrix is low (see figure 3)- In a seemingly typical problem

the density starts at 5$ and increases gradually until it reaches about

15$. It oscillates between 10$ and 20$ until convergence at which time

it drops down to about 10$,

First we noticed the size of U in equations A and B con -

siderably effects the occurrance of overflow. Generally the larger

the value of U the more often overflow was encountered. By reducing

the value of U from 9 down to h we were able to prevent overflow

from occurring as early. This is especially true for problems which

require a large number of iterations,

(1)
Gomory also suggested another approach which he called

the row combination method. Using this method on a set of Boolean

functions for R = 3- The comparison between the minimum rank method

and the minimum rank method appended with the row combination technique

is seen in figure 5,

Fig. 5 : Evaluation of Adding Row
Combination

Row combination Without row combination

Ave, number of iter, 62,1 6-,6

Time per iteration 46^ msecs 166 rrsecs

$ of problems with
overflow 17 . 6$ 0.0$



Thus in considering the increased computation for each iteration, the

row combining technique should be disregarded.

10



h. FEASIBLE AND NON-FEASIBLE

For example, when a Boolean function realizable with R = k

{h NOR elements) is tried with th< R = 3 formulation, the resulting

integer linear program is not feasible. In Figure 6 the average

number of iterations for all Boolean test functions and for three

different orderings of the constraints are shown,

Fig. 6: Average No, of Iterations

For 3 Different Orderings of the

Inequalities

„

1 2 3

Feasible 72,5 66.0 66.6

Non- feasible 85,5
, ., j

83*3 98,2
,

1

The difference in the average number of iterations for any

case is not too great. However in the non-feasible cases the number of

iterations deviates from the average much more than in the feasible case,

For example in the ordering of column 3 of figure 6 all non-feasible

functions required less than 92 iterations ex- ept for #17 and fflQ of figure

k which require k6l and 296 iterations respectively, The convergence

varies over a much larger number of iterations in non -feasible problems

than in feasible problems,

Figure 6 also demonstrates ' feasible problems are much

more difficult to solve than the feasible problems,

See figure 7 for details of the constraint ordering

11



5. ORDER OF INEQUALITIES

Gomory's method with the incorporation of the lexiographic

(1)
row rank variation is sensitive to the order of inequalities since

the lexiographic ordering is changed by altering the order of the

constraints. Figure 7 displays the average number of iterations for all

the functions of figure h for four different constraint orderings

.

The objective function is denoted by O.F. and slack variables always

Fig. 7: Average Number of Iterations
Under k Different Constraint Orderings

1 2 3 k

O.F, O.F. O.F. O.F.

G E E
*L

E B
i

G B
l

B
i

B
2

B
i

A
2

B
2

D
2

B
2

B
2

D
2

F D
2 °2

F A
3

F E

A
i

C
3

A
3

A
3

** A
2

C
3

C
3

C
2

C
2

A
2

G

A
3

A
l

C
2

B
2

°3 G A
l

F
2

Feasible 72.5 66.0 66.6 50.0

Non-feasible 85.5 83-3 98.2 118.0
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appear after all other constraints. It should be noted that B } B ,

and E are the only constraints which initially have negative entries

in the constant column.

It is difficult to draw any conclusive results from figure 7

•

However, it seems best to place the E constraints first since we have

more non-feasible than feasible problems. These inequalities are the only

ones which change according to the Boolean function which is being tested.

Since the rest of the constraints remain the same regardless of the

Boolean function being solved, the E constraints are likely the most

important. Therefore we place them at the top. One of the reasonable

orderings may be to put the more important inequalities at the upper part

of the tableau. However, strictly speaking we don't have any measure

of the importance of an inequality, One intuitive and reasonably

successful measure is to count the number of non-zero entries in an

inequality - the greater the number of coefficients the more important

the constraint.

13



6. ADDITIONAL. CONSTRAINTS

Another technique for increasing the speed of convergence is

to incorporate additional constraints which exclude unnecessary solutions

without loss_of generality. For example the two networks;

x

realize the same Boolean function. But it is not important to get both

solutions. Either one will be acceptable. Therefore additional constraints

should be added to exclude either one but obviously not both.

By considering other properties of a h element NOR network

(R = k-) we establish the following constraints;
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Note that some of the inequalities require that the network consist of

exactly 4 elements while others require that the Boolean function have

exactly 3 input variables. The additional constraints for the R = 3

network are obtained by neglecting the 1st element and relabeling the re-

maining elements 2, 3 and 4 as 1, 2, and 3 respectively.

Figure 8 shows the effect of adding these constraints to the

first 3 row orderings of figure 7 for the R = 3 network and for the six

Boolean functions #5 -#10. Figure 9 demonstrates the improvement on the

R = 4 network for all the 4 gate realizable Boolean functions, Without

the additional constraints all the R = 4 network problems either did

not converge after about 1200 iterations or generated an overflow. Al-

though all the infeasible R = 4 problems tested with additional constraints

did not converge after 1200 iterations, the additional constraints were

extremely successful, for feasible problems in the R = 4 case.

Fig. 8: Effectiveness of Additional Constraints on R = 3 Network,
Average Number of Iterations

Row Ordering

1 2 3

without with without with without with

Feasible 87,5 68.2 103.7 70.1 87.7 68.1

Non-feasible 98.2 129.8 I.45.8 137 = 4 83»3 146.2
,

15



Fig. 9 : Convergence with Additional Constraints on R = k Network

without with

°lo problems with
no convergence

* 35.3/o

°Jo problems with overflow 11.8$

Average ff=
iter, for sol. 355.6

From the results we notice the fact that the additional

constraints facilitate convergence if the problem is feasible but make

convergence worse if it is non-feasible,, Furthermore, the incorporation

of the added inequalities is much more effective with the R = k problems

than the R = 3 problems

.

A few functions were tried, However all exceeded the preassigned

bound of 1200 iterations

.

16



7. FIXING THE VALUES OF A VARIABLE

We tried splitting the given problem into two smaller

problems by fixing a particular variable to 1 in one and to in the

other. By comparing the results, we can pick the optimal network. By

picking a, _ in "the R = 3 network and by using the formulation of column

h of figure 7 we obtained the results of figure 10.

Fig. 10: Average Number of Iterations For All Test Functions

oc not preset a
13

= o

"-

a
13

= 1

Feasible 71.0 20.0 18,5

Non-feasible 81.0 32.9 55^5

Generally it is difficult to judge whether fixing a variable

speeds up the computation. However, it may be worthwhile if the right

choice of a variable is made.

17



8. RELATIONSHIP BETWEEN THE NUMBER OF ITERATIONS AND VARIABLES

In order to determine the increase in the number of iterations

we preset some randomly picked variables to their solution values.

(Solution of our problem is already known by using another approach.

)

This equivalently shrinks the size of integer linear programming

problems, but the general characteristics of the problem may not change

very much. The test was performed on one particular Boolean function

ac v be with the following order of inequalities

OF

A

E
C
3

F

G

Each size of the coefficient matrix was run 5 times with a different set

of variables being preset. The average number of iterations is plotted

in figure 11.

Fig. 11: Number of Iterations l(n) as a Function of the Number of

Variables n For the Boolean Function ac ^ toe.

60

In I(n)

5

(12,5.6

o 10' 20' 30'

n

w

:h8,5k.o]

50
1
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The curve of figure 11 demonstrates that the increase in the

number of iterations grows exponentially and can he expressed as

I(n) B 2.5 x 10" 02T7n

for the Boolean function ac ^ be.

Our conjecture is that the number of iterations is generally

"Rn
A* 10 where A and B are constants which depend upon the particular

type of integer linear programming problem.

19



9. COMPARISON OF HELLERMAN "S ALGORITHM AND GOMORY'S

Hellerman in reference 12 determined the optimum NOR circuit

for all Boolean functions f(x,, Xp, x ) by an exhaustive method,, He

generated all possible circuits and chose the best one for each function.

It is interesting to compare the integer programming approach

using Gomory's method with Hellerman' s to determine if it is better. For

the 3 and k element formulation (R = 3> M the computational efficiency

of Gomory's method is inferior to Hellerman 's approach, The number of

2
CR

iterations in Hellerman 's method increases as T-10 with the number

of elements R.

In the previous section we showed that Gomory's method appar-

ently increases as A-10 . Therefore it is unlikely that Gomory's

algorithm would be better than Hellerman 's exhaustive method since n

2
increases as R . However, this cannot be a definite conclusion since

we do not have sufficient computational experience. Also some techniques

to reduce the number of iterations for Gomory's method may be developed

in the future which could make it more effective tha.n Hellerman'

s

approach.

20



10. CONCLUSIONS

Using Gomory's algorithm ve duci es i'ully solved a few rather

large 0-1 value all integer problems of 90 variables and 2^0 constraints

Gomory's work was followed by the implicit enumeration

methods of Balas^ , GeoffriorT ' and others^ ' ' . These

algorithms further restrict the problem by requiring all variables to

be 1 or 0. The number of iterations for implicit enumerations reportedly

k (ID
grow as n .

Since our problems are 0-1 problems, we are now experimenting

with these implicit enumeration methods. We are very encouraged with

the initial results and feel these methods may be better for our

problems. Our results will be published.
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